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Abstract

A simple particular integral formulation is presented for poroelastic analysis. The elastostatics and steady-state poten-
tial flow equations are used as the complementary solution. A set of global shape functions is considered to approximate
the pore pressure loading term in the poroelastic equation, the transient terms of pore pressure and displacements in the
pore fluid flow equation to obtain the particular integrals for displacement, traction, pore pressure and flux.

Numerical results for four plane problems of soil consolidation are given and compared with their analytical solutions
to demonstrate the accuracy of the present formulation. Generally, agreement among all of those results is satisfactory if a
few interior points are added to the usual boundary elements.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The general theory of poroelasticity is governed by two coupled differential equations: the pore fluid flow
equation and the Navier equation with pore pressure body force. Because of the pore pressure loading term in
the Navier equation, the transient terms of pore pressure and displacement in the pore fluid flow equation, the
direct application of the boundary element method (BEM) to the coupled poroelastic problems generates a
domain integral in addition to the usual surface integrals (Banerjee, 1994; Banerjee and Butterfield, 1981).

In order to eliminate this volume integration problem, three methods has been proposed over the years: (1) the
convolution method (Dargush and Banerjee, 1989, 1991a,b; Chopra, 1992; Wang, 1995), (2) the method casting
the problem in the Laplace transform domain (Cheng and Liggett, 1984; Chen and Dargush, 1995) and (3) the
recently developed particular integral method (Park and Banerjee, 2002a) for coupled differential equations.

The particular integral method obtains the total solution as the sum of a complementary solution for the
homogeneous part of the differential equation and a particular solution for the total governing inhomogeneous
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differential equation. Thus one of the most important salient points of the method is that several types of com-
bination of homogeneous and inhomogeneous parts are possible from the governing equation if the fundamen-
tal solution of the homogeneous equation is available and the particular integral can be found from the
inhomogeneous equation. Park and Banerjee (2002a) presented the first developed the particular integral for-
mulations for 2D and 3D coupled poroelastic analysis. In their formulation, the solution of the equation of the
steady-state coupled poroelasticity was used as the complementary function. The required particular integrals
for displacement, traction, pore pressure and flux were derived by using a set of global shape functions
(Cyte = 0(A — r)? and C,= A4 —r) to approximate the transient terms of pore pressure and the displacement
in the pore fluid flow equation.

In this paper, a different and somewhat simpler particular integral formulation is presented for coupled
poroelastic analysis. The present formulation differs from the previous one, developed by Park and Banerjee
(2002a), in that the solutions of elastostatic equation and steady-state potential flow equation are used as the
complementary function, and one more global shape functions (C = A4 — r) is used to approximate the pore
pressure loading term in the Navier equation in addition to the previous two functions stated above for the
transient terms in the pore fluid flow equation. Thus the particular integrals for displacement, traction, pore
pressure and flux can be easily derived.

In order to appreciate the essential features of the present formulation, the previous particular integral for-
mulation developed by Park and Banerjee (2002a) is briefly examined in the next section followed by the new
formulation proposed here. Four examples of application for plane soil consolidation are presented along with
their analytical solutions (AS) to test the present formulation.

2. Previous particular integral formulation
The governing differential equation for coupled poroelasticity of a homogeneous, isotropic elastic body,

including the Navier and pore fluid flow equations, can be expressed in terms of displacement #; and pore pres-
sure p as

(A + wujji + puzz; — Pp; + fi =0 (1)
where A and p are Lame’s constants, k is the permeability, o« = /:ﬁ;;p Aq the undrained 4, f =1 — %, K=+ %

the drained bulk modulus, K’ the empirical constant which in certain circumstances equals to bulk modulus of
the solid constituents, f; and y are the body force and source (if present) in the volume, and i =1, 2(3) for
two(three) dimensions. Indicial notation is employed. Thus, commas represent differentiation with respect
to spatial coordinates, while a superposed dot denotes a time derivative. The constants f# and o can also be
expressed in terms of the undrained bulk modulus K, as

3-8
w=-t (4)
K.B

where B is the well-known Skempton’s coefficient of pore pressure.
In the absence of the body force and source, the solution of the governing Eqgs. (1) and (2) can be repre-
sented as a sum of complementary functions u{ and p° satisfying the homogeneous equations

(4 + wuj; + pais ; — fpl; = 0 (5)
kp$; =0 (6)
and particular integrals «” and pP satisfying the inhomogeneous equations
, p p P _
(4+ :u)uj,ji + pu ; — [))p,i =0 (7)
KPS;; —op—Pu; =0 (8)

where superscripts ¢ and p indicate complementary and particular solutions, respectively. Then the total solu-
tions for displacement u;, traction ¢, pore pressure p and flux ¢ are
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up = uf +u (9a)
=1+ (9b)
p=p"+p° (9¢c)
9=4q"+q" (9d)

where ¢ and ¢P are the particular integrals for traction and flux, respectively. It should be noted that the
homogeneous Egs. (5) and (6) are those for the steady-state poroelasticity.

By approximating the transient terms with known global shape functions, Cy(x,¢,) and Cy(x,¢,), and fic-
titious dens1ty functions, ¢, (¢,) and (f) (&,), such that

.X') = Zcik(xv én)qsk(én) (10)

n=1
X) =Y Cpx, &) () (11)

n=1

the particular integrals which satisfy Eqgs. (7) and (8) can be found as (Park and Banerjee, 2002a)

W) = > {ULEE)di(E) + Ul £),(E) | (12)

n=1
oh(x) = D {8k £ b)) + 556,68 | (13)

n=1

£6) = 3 { L 2)0ulE) + T2 £y ()

P =3 (D, 8)0ulE) + Dyl ), (6

—_ =\
—~
—
W
=

P =3 {0 8)h(E) + O, £, (&)

=1

=

By introducing the following set of global shape function:
Cik(x7 én) = 5ik(A - r)z (17)
Co(x,&)=A—r (18)

the corresponding kernels can be derived as

U}k(x, &) = 0u(D14 — Dzr)r3 + (3D14 — 4Dyr)ry,y, (19)
U?(x,é )= (D34 — D4r)r2y,- (20)
Shi(x, &) = Sy 2E )y + 2uEy; — 8Dy (21)
St(x, &) = 8iAE], + 2UE;; — 6D, (22)
E}k,(x 2) ={3(3+d)D14 —4(4 + d)Dyr}ry, (23)

Ely(x,&,) = (3D14 — 8Dsr )y Dk L (3DyA — 4Dy ) (8,9, + Oy + Ouy,) (24)
EL(x, &) ={(2+d)D:;4A - (3 + d)Dyr}r? (25)
Ef/.(x,gt ) = (D34 — Dyr)r 25,1 + (2D34 — 3D4r)y,y; (26)
T}k(xa én) = Sikj(x> én) ( ) (27)
T3 (x,&,) = SIZJ(X anj(x) (28)
Dk(x7 én) (C A Czr)ryk (29)
D,(x,&,) = (C34 — Cyr)r? (30)
0,(x,&,) = fk{é,k(ClA Cor)r + (C14 — 2Cyr) 2 k}n,- (31)
0,(x,&,) = —k(2C34 = 3Cyr)ym; (32)
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where r is the distance between x and &,, 4 is a constant chosen to be the largest dimension of the problem
domain, d is the dimensionality of the problem, n{x) is the unit normal at x in the jth direction, and the coef-
ficients are

2" g - -
“= _Hid; 2 _2/+—d; “ :g_d; = 3(1ﬁ+d)
. 28 B . o B ' - BB Dy — BB
3(1+d)(3+4d)’ 42+d)(4+d)’ 2d2+d)’ 3(1+d)(3+4d)
. B o O .
N A A reer
Finally one can obtain the following system equation in matrix form (Park and Banerjee, 2002a):
el Lo w0l el ®
L 0 Gy q 0 Fpp p My My, p
where
[My; M, Guj Gup 1| Ok Owp Fuj Fop | [ Wk Wop Ci 0
M, MpJ - { [ 0 G,,J On O, [ 0 FPJ { Wy W, ]} 0 cpll (34)

G and F are the fundamental solutions for steady-state poroelasticity, and W, Q, C are obtained from the ma-
trix form of particular integrals as

(0}-[2 &]{e)
eI

In explicit time integration scheme Eq. (33) can be expressed as

V- Rl DY --al G e
0 Gpllg 0 Fpy At My My, p At|{M, My p

Therefore, the final system Eq. (38) contains some coupling terms, such as G, F,, My, M;, and M,,.

3. The new simpler particular integral formulation

Unlike the previous formulation, the solution of the governing Egs. (1) and (2) can also be obtained by
considering different and simpler type of the combination of homogeneous and inhomogeneous equations.
The simplest combination might be obtained with the homogeneous equations as

(24w + i ; =0 (39)

kp$; =0 (40)
and the inhomogeneous equations as

(4+ #)’fﬁji + ﬂ“ﬁjj - ﬁp,i =0 (41)

Kkp; — op — Pit; =0 (42)

Of course the total solutions for displacement, traction, pore pressure and flux can be then expressed exactly as
before as Egs. (9a)—(9d). Here it should be noted that the homogeneous Eqs. (39) and (40) are those of the
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ordinary elastostatics and steady-state potential flow respectively, which are much simpler to deal with than
the steady-state poroelasticity equation used in the previous formulation and hold greater promise for future
extensions to problems of three-dimensional, axisymmetry and nonlinear analysis.

Then the required particular integrals can be obtained separately from Egs. (41) and (42). Interestingly one
can also obtain the particular integrals of displacement and traction in Eq. (41) from the previous study of
Henry and Banerjee (1988) and Park and Banerjee (2002b) as outlined below.

First, by using Goodier’s method (Timoshenko and Goodier, 1951), the particular integral for displacement
in Eq. (41) can be expressed as a gradient of a poroelastic displacement potential /(x)

up (x) = h(x) (43)
Substituting of Eq. (40) into Eq. (41) yields
h;(x) = p(x) (44)

In addition, by introducing one more global shape function C(x, ¢,,), the unknown pore pressure p(x) in Eq.
(41) can be approximated as

p) =3 Clx &)b(E) (45)

where ¢(&,) is a set of fictitious scalar densities.
Considering the global shape function C(x,¢&,) as

Cx,&)=4-r (46)

the poroelastic displacement potential /(x) and the particular integrals for displacement , stress and traction
can be found as (Henry and Banerjee, 1988; Park and Banerjee, 2002b)

h(x) =Y H(x,&,) (&) (47)
20 =3 U &)9(E) (48)
D) =38, E)(E) (49)
P =3 T £)(E) (50)
where .
H(x,&,) = (H\A — Hyr)r? (51)
Ui(x7 5n) = (UIA - UZr)yi (52)
Sij(x, &) = 0(S14 — Sor) — S3yi}j (53)
T,'(x, én) = Sij(xa én)nj(x) (54)

Substituting Eqgs. (45)—(54) into Eqs. (41), (43) and (44) one can obtain the following relationship among the
coefficients:

B B
H=- H,=—2 55
"T2d0 T 3(1+4d) (53)
U, =2H,, U,=3H, (56)
Sy =—8uH,, §,=—18uH,, S;=06ufl, (57)

It should be noted here that, even though one more global shape function for pore pressure is introduced, the
particular integrals of displacement and traction in Egs. (48) and (50) and their kernels in Egs. (52)—(54) are
simpler than those of previous formulation in Egs. (12), (14), (19)—(28).
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Next, for the particular integrals of pore pressure and flux in Eq. (42), one can use the same Eqgs. (15), (16),
(29)—(32) in the previous formulation.

4. Numerical implementation

The boundary integral equation related to the complementary functions S, #, p® and ¢° of Eqs. (39) and
(40) can be written as (Banerjee, 1994)

L) L1707 oo llom) 1707 uallma o o

where Gy, Fy;, G,, and F),, are the fundamental solutions for elastostatics and steady-state potential flow equa-
tions and Ci(&), C,,(&) represent the jump terms resulting from the singular nature of Fj; and F),,, respectively.
After a usual discretization of boundary S, Eq. (58) can be written in matrix form as

e~ c (= (59)
0 Gpllq 0 Fpllp 0
Considering the total solutions of Eq. (9) the complementary functions in Eq. (59) can be eliminated as
1 e e 4 o e 1 ) S 1 ©
0 Gpllg 0 Fpllp 0 Gpllg 0 FppllpP

If a finite number of &,, N, are chosen, the particular integrals for displacement, traction, pore pressure and
flux can be written as

{u’} = [U{¢} (61)
{7} = [Ti{¢} (62)
7} =[D Dp]{ < } (63)
b
o ¢
{¢"} =[O Qp]{d) } (64)
Substituting Egs. (61)—(64) into (60) and considering the fictitious nodal values as
{¢} = [C]{p} (65)

{oh-15 )

one can obtain the following equation:

APy e () S PR L3 ©
0 Gpllg 0 Fpllp My My]Lp
where

(M) = ([Gy] 1] = [Fy][U)[C]™ (68)
has been obtained from Egs. (60), (61), (62) and (65), and from Egs. (60), (63), (64) and (66) we have
¢l 0

0 c!

p

[Mp/' Mpp]:([Gpp][Qk QP}_[FPPMP/‘ PP])
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Using an explicit time integration scheme, Eq. (67) can now be expressed as

AT A [ O 1)
0 Gy q iij Fpp"’iMpp p At M, My, p

Since the right side of Eq. (70) involves known values of displacement and pore pressure specified either as
initial conditions or calculated previously, the final system equation can be written as

[BI{X} = {b} (71)

where X is unknown vector of displacement, traction, pore pressure and flux, b is a known vector and B is the
coefficient matrix. Therefore, the unknown displacements or tractions can still be obtained together with the
unknown pore pressure or flux. Note that the final system Eq. (70) is simpler than that of previous one (38).
Some of coupling terms, such G, F;,, M;; and M,,, are eliminated. It also involves significantly less matrix
multiplications which are always time consuming for large problems.

As mentioned in the previous works (Park and Banerjee, 2002a) the interior points can be used for a better
representation of the particular integrals. It can be also noted that the present computer program for coupled
poroelastic analysis is developed from the elastostatic and steady-state potential flow programs available in

Banerjee (1994).
5. Numerical examples

In order to test the validity and accuracy of the present formulations, four example problems are solved.
The example problems are described for consolidation problems of a layer deformed between rigid plates
under constant load and a single poroelastic stratum beneath a strip load as well as unidirectional
consolidation.

The material properties used in all example problems are: k =1.0, E=1.0, v=0, v,=0.5 and B=1.
Notice, for this set of properties, that the diffusivity is unity.

5.1. Example 1: Unidirectional consolidation

The first example is the unidirectional consolidation of a fully saturated soil. The top surface is suddenly
subjected to uniform compression traction of unity and is drained through that surface. The soil sample
assumes to be in plane strain with the remaining three faces which are impermeable and restrained from nor-
mal displacement. The modeling mesh with 16 quadratic boundary elements and 9 interior points is shown in
Fig. 1.

The analytical solutions of pore pressure p and displacement u for this example problem can be obtained as
(Biot, 1941)

‘ 1 . (2n— l)nyef%ﬂnzm

i) 2

1 i1
i G
—

Some computed values of pore pressure at y =0 and displacement at y = 1, for a time step of 0.0025, are
shown in Figs. 2 and 3, respectively. For all figures shown hereafter, the number in the parenthesis represents
the number of elements used for the analysis. Plus (+) sign indicates the additional number of the interior
points involved in the analysis. For example in Fig. 2, (16 + 9) means 16 boundary elements and 9 interior
points. Good agreement between analytical and numerical solutions can be seen. It is also of interest to note
that the results of the present analysis are within 4% of those obtained by the more expensive computation of
the previous formulation of Park and Banerjee (2002a,b).

p(y,t) =

n=

u(y7t) =

2]N|oo RN
8

n=
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Fig. 1. Modeling mesh for unidirectional consolidation.
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Fig. 2. Example 1: Pore pressure at x =0.5, y =0.
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Fig. 3. Example 1: Displacement at x =0.5, y = 1.
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5.2. Example 2: Consolidation of a layer deformed between rigid plates

The second problem is the consolidation of a fully saturated soil sample between two impervious rigid
plates. This example problem was first solved by Mandel (1953) who pointed out a critical difference between
Biot’s theory and the earlier theory of Terzaghi in the prediction of pore pressure. It was considered for the
original Mandel’s problem that a constant vertical force of 2F is suddenly applied over the top surface. The
soil sample was assumed to be in plane strain and drained laterally. In this case, only the positive octant of the
sample is modeled, while symmetry constraints are imposed. Fig. 4 shows the modeling mesh with 16 qua-
dratic boundary elements and 9 interior points.

The analytical solutions of pore pressure at the center and the displacement in y-direction are given as
(Mandel, 1953; Cheng and Detournay, 1988)

O
O

Q)

p=0

el Vel BYaN B\
N/ B O N

k 10 N
N /1

Fig. 4. Modeling mesh for consolidation of a layer deformed between rigid plates.

o
oS
v —AS
€ o2t o (16+9), dt=0.0025
A (16+9), dt=0.01
01l | x (16+9), dt=0.025
0.0 ‘ ‘
0.01 01 1

Time, t

Fig. 5. Example 2: Pore pressure at x =0, y =0.
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X
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0.7 |
3
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B 06 o (16+9), dt=0.0025
A (16+9), dt=0.01
05 X (16+9), dt=0.025
04 ‘ ‘ ‘ ‘
0.0 0.2 04 0.6 0.8 1.0
Time, tV2

Fig. 6. Example 2: Displacement at x =0.5, y = 1.

o2et

i
a2

p(0,¢) = iA,v(l —cosa;)e

n=I

F(1—=v) F(l—v,) & singcose, %

- + ; e < |y
2ua ua “— o; — SIn o; COS

u(y, 1)

where
F(A42u)cosa; ~ 2kBu(1 —v)(1 + )
d— G+ 2wcoss” C 91— va)(ve — V)

vy is the undrained v and o; are the roots of tano = 244,
The results from the present formulation, for time steps of 0.0025, 0.01 and 0.025, are compared with the
analytical solutions in Figs. 5 and 6 for pore pressure at the point of (x,y) = (0,0) and displacement at the
point of (x,y) =(0.5,1.0) respectively.
Again good agreement can be seen. From Fig. 5 the well-known Mandel-Cryer effect, of increasing pore
pressure during the early stages of the process, is evident. These results are also almost identical to those of
the earlier particular integral formulation (Park and Banerjee, 2002a,b).

5.3. Example 3: Consolidation under a strip load (1)
The third example problem deals with the consolidation of a poroelastic layer of a finite thickness, resting

on a smooth impervious base and subjected to conditions of plane strain loading. This problem was solved by
Gibson et al. (1970).

t=1
LY LV Lo | o L o
Py T 1 T T
00000 i
J39°a | I [ =N X
Tl gl%\/l ’(;|g ~7 1 Ny

Fig. 7. Modeling for consolidation under a strip load (1).
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0.001 0.01 0.1 1
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Fig. 8. Example 3: Displacement at x =0, y = 1.

The modeling mesh with 24 quadratic boundary elements and 18 interior points is shown in Fig. 7. A strip
load of width 2a with a uniform intensity is applied instantaneously at time # = 0 and thereafter held constant
with drainage occurring only at the top surface.

The numerical result of displacement at the point (x, y) = (0, 1) with respect to time is shown in Fig. 8. A
good agreement is observed between the numerical and analytical solutions.

5.4. Example 4: Consolidation under a strip load (2)

The final example also deals with the consolidation of a single poroelastic stratum beneath a strip load. A
strip load of width 2a with a uniform intensity is applied instantaneously at time # = 0 and thereafter held con-
stant. The entire lower boundary remains impervious, while free drainage is permitted along the top surface.
The modeling mesh with 18 quadratic boundary elements and 30 (+ mark only) or 46 (+ and circle marks)
interior points is shown in Fig. 9 for the particular case of H/a = 5.

Some numerical results of pore pressure for the point (x,y) =(0,4), and settlement for the point of
(x,¥) =(0,5) are shown in Figs. 10 and 11, for a time step of 0.025. These results are compared with those
from the convolution method and the previous 3D particular integral formulation by Park and Banerjee
(2002a).

Again good agreement can be seen and the Mandel-Cryer effect is evident as shown in Fig. 10.

r

T ]t=1
Jrot+—oe———o6—F—=¢ o~
tor  + o+ o+ +
+ o+ o+ + )
[(OXS
F++ + + + o+ 0
p ° T~ I
T++ + + o+ +
¢ - ®
F++ + + + +
° ol o 1 o 1 o ANz Xy
IEY Y]
k 10 N|
N 4

Fig. 9. Modeling mesh for consolidation under a strip load (2).
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0.6
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0.0 e :
0.01 0.1 1
Time, t
Fig. 10. Example 4: Pore pressure at x =0, y = 4.
25
— Corw.
A P&B (3D, 96)
° (18+30)
_ 20 X (18+46) 3
15}
&
ki
&
3 15
10 1 1 1 1 1 1 1 1
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
Time, tV2

Fig. 11. Example 4: Displacement at x =0, y = 5.

6. Conclusion

The simple particular integral formulation has been developed for coupled poroelastic analysis. The present
formulation is simpler than the previous one in that:

(1) Instead of using the steady-state poroelasticity equation, the equations of elastostatics and steady-state
potential flow are used as the complementary functions.

(2) Although one more global shape function for pore pressure loading term in the Navier equation is intro-
duced, the computations of particular integrals of displacement and traction in the present formulation
are simpler than those in the previous one.

(3) The final system equation is simpler than that of the previous one because some of the coupling terms are
eliminated, thereby reducing a large amount of matrix multiplications.

The present formulation was verified by comparing the results of four plane problems of soil consolidation
with their analytical solutions. Good agreement among all of those results was obtained by including interior
points. It has been demonstrated that 2D coupled poroelastic problems can be solved using the present simple
particular integral formulation. These analyses and earlier ones of Park and Banerjee (2002a,b) prove once
again that the choice of complimentary and particular solutions are somewhat arbitrary because it is the total
solution which provides the uniqueness of the solution by satisfying the boundary conditions. This well-known
fact is of course one of the reasons why authors have always restricted themselves with only simpler global
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shape functions of (4 — r) or (4 — r)* type. More elaborate functions may have better modeling capabilities on
their own but used in the context of particular integrals may not show any better performance.
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