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Abstract

A simple particular integral formulation is presented for poroelastic analysis. The elastostatics and steady-state poten-
tial flow equations are used as the complementary solution. A set of global shape functions is considered to approximate
the pore pressure loading term in the poroelastic equation, the transient terms of pore pressure and displacements in the
pore fluid flow equation to obtain the particular integrals for displacement, traction, pore pressure and flux.

Numerical results for four plane problems of soil consolidation are given and compared with their analytical solutions
to demonstrate the accuracy of the present formulation. Generally, agreement among all of those results is satisfactory if a
few interior points are added to the usual boundary elements.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The general theory of poroelasticity is governed by two coupled differential equations: the pore fluid flow
equation and the Navier equation with pore pressure body force. Because of the pore pressure loading term in
the Navier equation, the transient terms of pore pressure and displacement in the pore fluid flow equation, the
direct application of the boundary element method (BEM) to the coupled poroelastic problems generates a
domain integral in addition to the usual surface integrals (Banerjee, 1994; Banerjee and Butterfield, 1981).

In order to eliminate this volume integration problem, three methods has been proposed over the years: (1) the
convolution method (Dargush and Banerjee, 1989, 1991a,b; Chopra, 1992; Wang, 1995), (2) the method casting
the problem in the Laplace transform domain (Cheng and Liggett, 1984; Chen and Dargush, 1995) and (3) the
recently developed particular integral method (Park and Banerjee, 2002a) for coupled differential equations.

The particular integral method obtains the total solution as the sum of a complementary solution for the
homogeneous part of the differential equation and a particular solution for the total governing inhomogeneous
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differential equation. Thus one of the most important salient points of the method is that several types of com-
bination of homogeneous and inhomogeneous parts are possible from the governing equation if the fundamen-
tal solution of the homogeneous equation is available and the particular integral can be found from the
inhomogeneous equation. Park and Banerjee (2002a) presented the first developed the particular integral for-
mulations for 2D and 3D coupled poroelastic analysis. In their formulation, the solution of the equation of the
steady-state coupled poroelasticity was used as the complementary function. The required particular integrals
for displacement, traction, pore pressure and flux were derived by using a set of global shape functions
(Cik = dik(A � r)2 and Cp = A � r) to approximate the transient terms of pore pressure and the displacement
in the pore fluid flow equation.

In this paper, a different and somewhat simpler particular integral formulation is presented for coupled
poroelastic analysis. The present formulation differs from the previous one, developed by Park and Banerjee
(2002a), in that the solutions of elastostatic equation and steady-state potential flow equation are used as the
complementary function, and one more global shape functions (C = A � r) is used to approximate the pore
pressure loading term in the Navier equation in addition to the previous two functions stated above for the
transient terms in the pore fluid flow equation. Thus the particular integrals for displacement, traction, pore
pressure and flux can be easily derived.

In order to appreciate the essential features of the present formulation, the previous particular integral for-
mulation developed by Park and Banerjee (2002a) is briefly examined in the next section followed by the new
formulation proposed here. Four examples of application for plane soil consolidation are presented along with
their analytical solutions (AS) to test the present formulation.

2. Previous particular integral formulation

The governing differential equation for coupled poroelasticity of a homogeneous, isotropic elastic body,
including the Navier and pore fluid flow equations, can be expressed in terms of displacement ui and pore pres-
sure p as
ðkþ lÞuj;ji þ lui;jj � bp;i þ fi ¼ 0 ð1Þ
jp;jj � a _p � b _uj;j þ w ¼ 0 ð2Þ
where k and l are Lame�s constants, j is the permeability, a ¼ b2

ku�k, ku the undrained k, b ¼ 1� K
K 0s

, K ¼ kþ 2l
3

the drained bulk modulus, K 0s the empirical constant which in certain circumstances equals to bulk modulus of
the solid constituents, fi and w are the body force and source (if present) in the volume, and i = 1, 2(3) for
two(three) dimensions. Indicial notation is employed. Thus, commas represent differentiation with respect
to spatial coordinates, while a superposed dot denotes a time derivative. The constants b and a can also be
expressed in terms of the undrained bulk modulus Ku as
b ¼ 1

B
1� K

Ku

� �
ð3Þ

a ¼ b
KuB

ð4Þ
where B is the well-known Skempton�s coefficient of pore pressure.
In the absence of the body force and source, the solution of the governing Eqs. (1) and (2) can be repre-

sented as a sum of complementary functions uc
i and pc satisfying the homogeneous equations
ðkþ lÞuc
j;ji þ luc

i;jj � bpc
;i ¼ 0 ð5Þ

jpc
;jj ¼ 0 ð6Þ
and particular integrals up
i and pp satisfying the inhomogeneous equations
ðkþ lÞup
j;ji þ lup

i;jj � bpp
;i ¼ 0 ð7Þ

jpp
;jj � a _p � b _uj;j ¼ 0 ð8Þ
where superscripts c and p indicate complementary and particular solutions, respectively. Then the total solu-
tions for displacement ui, traction ti, pore pressure p and flux q are
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ui ¼ uc
i þ up

i ð9aÞ
ti ¼ tc

i þ tp
i ð9bÞ

p ¼ pc þ pp ð9cÞ
q ¼ qc þ qp ð9dÞ
where tp
i and qp are the particular integrals for traction and flux, respectively. It should be noted that the

homogeneous Eqs. (5) and (6) are those for the steady-state poroelasticity.
By approximating the transient terms with known global shape functions, Cik(x,nn) and Cp(x,nn), and fic-

titious density functions, _/kðnnÞ and _/pðnnÞ, such that
_uiðxÞ ¼
X1
n¼1

Cikðx; nnÞ _/kðnnÞ ð10Þ

_pðxÞ ¼
X1
n¼1

Cpðx; nnÞ _/pðnnÞ ð11Þ
the particular integrals which satisfy Eqs. (7) and (8) can be found as (Park and Banerjee, 2002a)
up
i ðxÞ ¼

X1
n¼1

U 1
ikðx; nnÞ _/kðnnÞ þ U 2

i ðx; nnÞ _/pðnnÞ
n o

ð12Þ

rp
ijðxÞ ¼

X1
n¼1

S1
ikjðx; nnÞ _/kðnnÞ þ S2

ijðx; nnÞ _/pðnnÞ
n o

ð13Þ

tp
i ðxÞ ¼

X1
n¼1

T 1
ikðx; nnÞ _/kðnnÞ þ T 2

i ðx; nnÞ _/pðnnÞ
n o

ð14Þ

ppðxÞ ¼
X1
n¼1

Dkðx; nnÞ _/kðnnÞ þ Dpðx; nnÞ _/pðnnÞ
n o

ð15Þ

qpðxÞ ¼
X1
n¼1

Qkðx; nnÞ _/kðnnÞ þ Qpðx; nnÞ _/pðnnÞ
n o

ð16Þ
By introducing the following set of global shape function:
Cikðx; nnÞ ¼ dikðA� rÞ2 ð17Þ
Cpðx; nnÞ ¼ A� r ð18Þ
the corresponding kernels can be derived as
U 1
ikðx; nnÞ ¼ dik D1A� D2rð Þr3 þ ð3D1A� 4D2rÞryiyk ð19Þ

U 2
i ðx; nnÞ ¼ ðD3A� D4rÞr2yi ð20Þ

S1
ikjðx; nnÞ ¼ dijkE1

lkl þ 2lE1
ikj � dijbDk ð21Þ

S2
ijðx; nnÞ ¼ dijkE2

ll þ 2lE2
ij � dijbDp ð22Þ

E1
lklðx; nnÞ ¼ 3ð3þ dÞD1A� 4ð4þ dÞD2rf gryk ð23Þ

E1
ikjðx; nnÞ ¼ 3D1A� 8D2rð Þ

yiyjyk

r
þ 3D1A� 4D2rð Þr djkyi þ dijyk þ dikyj

� �
ð24Þ

E2
llðx; nnÞ ¼ ð2þ dÞD3A� ð3þ dÞD4rf gr2 ð25Þ

E2
ijðx; nnÞ ¼ D3A� D4rð Þr2dij þ 2D3A� 3D4rð Þyiyj ð26Þ

T 1
ikðx; nnÞ ¼ S1

ikjðx; nnÞnjðxÞ ð27Þ
T 2

i ðx; nnÞ ¼ S2
ijðx; nnÞnjðxÞ ð28Þ

Dkðx; nnÞ ¼ ðC1A� C2rÞryk ð29Þ
Dpðx; nnÞ ¼ ðC3A� C4rÞr2 ð30Þ
Qkðx; nnÞ ¼ �k dikðC1A� C2rÞr þ ðC1A� 2C2rÞ yiyk

r

n o
ni ð31Þ

Qpðx; nnÞ ¼ �kð2C3A� 3C4rÞyini ð32Þ
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where r is the distance between x and nn, A is a constant chosen to be the largest dimension of the problem
domain, d is the dimensionality of the problem, nj(x) is the unit normal at x in the jth direction, and the coef-
ficients are
C1 ¼ �
2b�

1þ d
; C2 ¼ �

b�

2þ d
; C3 ¼

b��

2d
; C4 ¼

b��

3ð1þ dÞ

D1 ¼ �
2b�b���

3ð1þ dÞð3þ dÞ ; D2 ¼ �
b�b���

4ð2þ dÞð4þ dÞ ; D3 ¼
b��b���

2dð2þ dÞ ; D4 ¼
b��b���

3ð1þ dÞð3þ dÞ

b� ¼ b
j
; b�� ¼ a

j
; b��� ¼ b

ðkþ 2lÞ

Finally one can obtain the following system equation in matrix form (Park and Banerjee, 2002a):
Gij Gip

0 Gpp

� �
ti

q

� 	
�

F ij F ip

0 F pp

� �
ui

p

� 	
¼

Mij Mip

Mpj Mpp

� �
_ui

_p

� 	
ð33Þ
where
Mij Mip

Mpj Mpp

� �
¼

Gmj Gmp

0 Gpp

� �
Qmk Qmp

Qpk Qpp

" #
�

F mj F mp

0 F pp

� �
W mk W mp

W pk W pp

� �( )
C�1

ki 0

0 C�1
p

" #
ð34Þ
G and F are the fundamental solutions for steady-state poroelasticity, and W, Q, C are obtained from the ma-
trix form of particular integrals as
up
i

pp

� 	
¼

W ij W ip

W pj W pp

� � _/i

_/p

( )
ð35Þ

tp
i

qp

� 	
¼

Qij Qip

Qpj Qpp

" #
_/i

_/p

( )
ð36Þ

_/i

_/p

( )
¼

C�1
ii 0

0 C�1
p

" #
_ui

_p

� 	
ð37Þ
In explicit time integration scheme Eq. (33) can be expressed as
Gij Gip

0 Gpp

� �
ti

q

� 	t

�
F ij F ip

0 F pp

� �
þ 1

Dt

Mij Mip

Mpj Mpp

� �� �
ui

p

� 	t

¼ � 1

Dt

Mij Mip

Mpj Mpp

� �
ui

p

� 	t�Dt

ð38Þ
Therefore, the final system Eq. (38) contains some coupling terms, such as Gip, Fip, Mij, Mip and Mpj.
3. The new simpler particular integral formulation

Unlike the previous formulation, the solution of the governing Eqs. (1) and (2) can also be obtained by
considering different and simpler type of the combination of homogeneous and inhomogeneous equations.
The simplest combination might be obtained with the homogeneous equations as
ðkþ lÞuc
j;ji þ luc

i;jj ¼ 0 ð39Þ
jpc

;jj ¼ 0 ð40Þ
and the inhomogeneous equations as
ðkþ lÞup
j;ji þ lup

i;jj � bp;i ¼ 0 ð41Þ
jpp

;jj � a _p � b _uj;j ¼ 0 ð42Þ
Of course the total solutions for displacement, traction, pore pressure and flux can be then expressed exactly as
before as Eqs. (9a)–(9d). Here it should be noted that the homogeneous Eqs. (39) and (40) are those of the
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ordinary elastostatics and steady-state potential flow respectively, which are much simpler to deal with than
the steady-state poroelasticity equation used in the previous formulation and hold greater promise for future
extensions to problems of three-dimensional, axisymmetry and nonlinear analysis.

Then the required particular integrals can be obtained separately from Eqs. (41) and (42). Interestingly one
can also obtain the particular integrals of displacement and traction in Eq. (41) from the previous study of
Henry and Banerjee (1988) and Park and Banerjee (2002b) as outlined below.

First, by using Goodier�s method (Timoshenko and Goodier, 1951), the particular integral for displacement
in Eq. (41) can be expressed as a gradient of a poroelastic displacement potential h(x)
up
i ðxÞ ¼ h;iðxÞ ð43Þ
Substituting of Eq. (40) into Eq. (41) yields
h;jjðxÞ ¼ bpðxÞ ð44Þ

In addition, by introducing one more global shape function C(x,nn), the unknown pore pressure p(x) in Eq.

(41) can be approximated as
pðxÞ ¼
X1
n¼1

Cðx; nnÞ/ðnnÞ ð45Þ
where /(nn) is a set of fictitious scalar densities.
Considering the global shape function C(x,nn) as
Cðx; nnÞ ¼ A� r ð46Þ

the poroelastic displacement potential h(x) and the particular integrals for displacement , stress and traction
can be found as (Henry and Banerjee, 1988; Park and Banerjee, 2002b)
hðxÞ ¼
X1
n¼1

Hðx; nnÞ/ðnnÞ ð47Þ

up
i ðxÞ ¼

X1
n¼1

Uiðx; nnÞ/ðnnÞ ð48Þ

rp
ijðxÞ ¼

X1
n¼1

Sijðx; nnÞ/ðnnÞ ð49Þ

tp
i ðxÞ ¼

X1
n¼1

T iðx; nnÞ/ðnnÞ ð50Þ
where
Hðx; nnÞ ¼ ðH 1A� H 2rÞr2 ð51Þ
Uiðx; nnÞ ¼ ðU 1A� U 2rÞyi ð52Þ

Sijðx; nnÞ ¼ dijðS1A� S2rÞ � S3

yiyj

r
ð53Þ

T iðx; nnÞ ¼ Sijðx; nnÞnjðxÞ ð54Þ
Substituting Eqs. (45)–(54) into Eqs. (41), (43) and (44) one can obtain the following relationship among the
coefficients:
H 1 ¼
b
2d
; H 2 ¼

b
3ð1þ dÞ ð55Þ

U 1 ¼ 2H 1; U 2 ¼ 3H 2 ð56Þ
S1 ¼ �8lH 1; S2 ¼ �18lH 2; S3 ¼ 6lH 2 ð57Þ
It should be noted here that, even though one more global shape function for pore pressure is introduced, the
particular integrals of displacement and traction in Eqs. (48) and (50) and their kernels in Eqs. (52)–(54) are
simpler than those of previous formulation in Eqs. (12), (14), (19)–(28).
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Next, for the particular integrals of pore pressure and flux in Eq. (42), one can use the same Eqs. (15), (16),
(29)–(32) in the previous formulation.

4. Numerical implementation

The boundary integral equation related to the complementary functions uc
i , tc

i , pc and qc of Eqs. (39) and
(40) can be written as (Banerjee, 1994)
CijðnÞuc
i ðnÞ

CppðnÞpcðnÞ

� 	
¼
Z

S

Gijðx; nÞ 0

0 Gppðx; nÞ

� �
tc
i ðxÞ

qcðxÞ

� 	
�

F ijðx; nÞ 0

0 F ppðx; nÞ

� �
uc

i ðxÞ
pcðxÞ

� 	� �
dSðxÞ ð58Þ
where Gij, Fij, Gpp and Fpp are the fundamental solutions for elastostatics and steady-state potential flow equa-
tions and Cij(n), Cpp(n) represent the jump terms resulting from the singular nature of Fij and Fpp, respectively.

After a usual discretization of boundary S, Eq. (58) can be written in matrix form as
Gij 0

0 Gpp

� �
tc
i

qc

� 	
�

F ij 0

0 F pp

� �
uc

i

pc

� 	
¼

0

0

� 	
ð59Þ
Considering the total solutions of Eq. (9) the complementary functions in Eq. (59) can be eliminated as
Gij 0

0 Gpp

� �
ti

q

� 	
�

F ij 0

0 F pp

� �
ui

p

� 	
¼

Gij 0

0 Gpp

� �
tp
i

qp

� 	
�

F ij 0

0 F pp

� �
up

i

pp

� 	
ð60Þ
If a finite number of nn, N, are chosen, the particular integrals for displacement, traction, pore pressure and
flux can be written as
up
if g ¼ U i½ � /f g ð61Þ

tp
if g ¼ T i½ � /f g ð62Þ

ppf g ¼ Dk Dp½ �
_/k

_/p

( )
ð63Þ

qpf g ¼ Qk Qp


 � _/k

_/p

( )
ð64Þ
Substituting Eqs. (61)–(64) into (60) and considering the fictitious nodal values as
/f g ¼ C½ ��1 pf g ð65Þ
_/k

_/p

( )
¼

C�1
ki 0

0 C�1
p

" #
_ui

_p

� 	
ð66Þ
one can obtain the following equation:
Gij 0

0 Gpp

� �
ti

q

� 	
�

F ij Mip

0 F pp

� �
ui

p

� 	
¼

0 0

Mpj Mpp

� �
_ui

_p

� 	
ð67Þ
where
Mjp


 �
¼ Gij


 �
T i½ � � F ij


 �
Ui½ �

� �
C½ ��1 ð68Þ
has been obtained from Eqs. (60), (61), (62) and (65), and from Eqs. (60), (63), (64) and (66) we have
Mpj Mpp½ � ¼ Gpp


 �
Qk Qp


 �
� F pp


 �
P k P p½ �

� � C�1
kj 0

0 C�1
p

" #
ð69Þ
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Using an explicit time integration scheme, Eq. (67) can now be expressed as
Gij 0

0 Gpp

� �
ti

q

� 	t

�
F ij Mip

1
Dt Mpj F pp þ 1

Dt Mpp

" #
ui

p

� 	t

¼ � 1

Dt

0 0

Mpj Mpp

� �
ui

p

� 	t�Dt

ð70Þ
Since the right side of Eq. (70) involves known values of displacement and pore pressure specified either as
initial conditions or calculated previously, the final system equation can be written as
B½ � Xf g ¼ bf g ð71Þ
where X is unknown vector of displacement, traction, pore pressure and flux, b is a known vector and B is the
coefficient matrix. Therefore, the unknown displacements or tractions can still be obtained together with the
unknown pore pressure or flux. Note that the final system Eq. (70) is simpler than that of previous one (38).
Some of coupling terms, such Gip, Fip, Mij and Mip, are eliminated. It also involves significantly less matrix
multiplications which are always time consuming for large problems.

As mentioned in the previous works (Park and Banerjee, 2002a) the interior points can be used for a better
representation of the particular integrals. It can be also noted that the present computer program for coupled
poroelastic analysis is developed from the elastostatic and steady-state potential flow programs available in
Banerjee (1994).

5. Numerical examples

In order to test the validity and accuracy of the present formulations, four example problems are solved.
The example problems are described for consolidation problems of a layer deformed between rigid plates
under constant load and a single poroelastic stratum beneath a strip load as well as unidirectional
consolidation.

The material properties used in all example problems are: j = 1.0, E = 1.0, m = 0, mu = 0.5 and B = 1.
Notice, for this set of properties, that the diffusivity is unity.

5.1. Example 1: Unidirectional consolidation

The first example is the unidirectional consolidation of a fully saturated soil. The top surface is suddenly
subjected to uniform compression traction of unity and is drained through that surface. The soil sample
assumes to be in plane strain with the remaining three faces which are impermeable and restrained from nor-
mal displacement. The modeling mesh with 16 quadratic boundary elements and 9 interior points is shown in
Fig. 1.

The analytical solutions of pore pressure p and displacement u for this example problem can be obtained as
(Biot, 1941)
pðy; tÞ ¼ 4

p

X1
n¼1

1

ð2n� 1Þ sin
ð2n� 1Þpy

2
e�
ð2n�1Þ2p2jt

4

uðy; tÞ ¼ 8

p2

X1
n¼1

1

ð2n� 1Þ2
1� e�

ð2n�1Þ2p2jt
4

� �
Some computed values of pore pressure at y = 0 and displacement at y = 1, for a time step of 0.0025, are
shown in Figs. 2 and 3, respectively. For all figures shown hereafter, the number in the parenthesis represents
the number of elements used for the analysis. Plus (+) sign indicates the additional number of the interior
points involved in the analysis. For example in Fig. 2, (16 + 9) means 16 boundary elements and 9 interior
points. Good agreement between analytical and numerical solutions can be seen. It is also of interest to note
that the results of the present analysis are within 4% of those obtained by the more expensive computation of
the previous formulation of Park and Banerjee (2002a,b).
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Fig. 1. Modeling mesh for unidirectional consolidation.
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Fig. 3. Example 1: Displacement at x = 0.5, y = 1.
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Fig. 2. Example 1: Pore pressure at x = 0.5, y = 0.
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5.2. Example 2: Consolidation of a layer deformed between rigid plates

The second problem is the consolidation of a fully saturated soil sample between two impervious rigid
plates. This example problem was first solved by Mandel (1953) who pointed out a critical difference between
Biot�s theory and the earlier theory of Terzaghi in the prediction of pore pressure. It was considered for the
original Mandel�s problem that a constant vertical force of 2F is suddenly applied over the top surface. The
soil sample was assumed to be in plane strain and drained laterally. In this case, only the positive octant of the
sample is modeled, while symmetry constraints are imposed. Fig. 4 shows the modeling mesh with 16 qua-
dratic boundary elements and 9 interior points.

The analytical solutions of pore pressure at the center and the displacement in y-direction are given as
(Mandel, 1953; Cheng and Detournay, 1988)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.01 0.1 1
Time, t
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re
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ur

e
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(16+9), dt=0.025

Fig. 5. Example 2: Pore pressure at x = 0, y = 0.

1.0

t=1.0

p=0

y

x

Fig. 4. Modeling mesh for consolidation of a layer deformed between rigid plates.
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Fig. 6. Example 2: Displacement at x = 0.5, y = 1.
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pð0; tÞ ¼
X1
n¼1

Ai 1� cos aið Þe�
a2

i
ct

a2

uðy; tÞ ¼ � F ð1� mÞ
2la

þ F ð1� muÞ
la

X1
n¼1

sin ai cos ai

ai � sin ai cos ai
e�

a2
i

ct

a2

" #
y

where
Ai ¼
F ðkþ 2lÞ cos ai

l� ðkþ 2lÞcos2ai
; c ¼ 2jB2lð1� mÞð1þ muÞ2

9ð1� muÞðmu � mÞ

mu is the undrained m and ai are the roots of tan a ¼ ðkþ2lÞ

l a.
The results from the present formulation, for time steps of 0.0025, 0.01 and 0.025, are compared with the

analytical solutions in Figs. 5 and 6 for pore pressure at the point of (x,y) = (0,0) and displacement at the
point of (x,y) = (0.5,1.0) respectively.

Again good agreement can be seen. From Fig. 5 the well-known Mandel–Cryer effect, of increasing pore
pressure during the early stages of the process, is evident. These results are also almost identical to those of
the earlier particular integral formulation (Park and Banerjee, 2002a,b).

5.3. Example 3: Consolidation under a strip load (1)

The third example problem deals with the consolidation of a poroelastic layer of a finite thickness, resting
on a smooth impervious base and subjected to conditions of plane strain loading. This problem was solved by
Gibson et al. (1970).
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Fig. 7. Modeling for consolidation under a strip load (1).
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The modeling mesh with 24 quadratic boundary elements and 18 interior points is shown in Fig. 7. A strip
load of width 2a with a uniform intensity is applied instantaneously at time t = 0 and thereafter held constant
with drainage occurring only at the top surface.

The numerical result of displacement at the point (x,y) = (0, 1) with respect to time is shown in Fig. 8. A
good agreement is observed between the numerical and analytical solutions.

5.4. Example 4: Consolidation under a strip load (2)

The final example also deals with the consolidation of a single poroelastic stratum beneath a strip load. A
strip load of width 2a with a uniform intensity is applied instantaneously at time t = 0 and thereafter held con-
stant. The entire lower boundary remains impervious, while free drainage is permitted along the top surface.
The modeling mesh with 18 quadratic boundary elements and 30 (+ mark only) or 46 (+ and circle marks)
interior points is shown in Fig. 9 for the particular case of H/a = 5.

Some numerical results of pore pressure for the point (x,y) = (0,4), and settlement for the point of
(x,y) = (0,5) are shown in Figs. 10 and 11, for a time step of 0.025. These results are compared with those
from the convolution method and the previous 3D particular integral formulation by Park and Banerjee
(2002a).

Again good agreement can be seen and the Mandel–Cryer effect is evident as shown in Fig. 10.
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Fig. 9. Modeling mesh for consolidation under a strip load (2).
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Fig. 10. Example 4: Pore pressure at x = 0, y = 4.
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6. Conclusion

The simple particular integral formulation has been developed for coupled poroelastic analysis. The present
formulation is simpler than the previous one in that:

(1) Instead of using the steady-state poroelasticity equation, the equations of elastostatics and steady-state
potential flow are used as the complementary functions.

(2) Although one more global shape function for pore pressure loading term in the Navier equation is intro-
duced, the computations of particular integrals of displacement and traction in the present formulation
are simpler than those in the previous one.

(3) The final system equation is simpler than that of the previous one because some of the coupling terms are
eliminated, thereby reducing a large amount of matrix multiplications.

The present formulation was verified by comparing the results of four plane problems of soil consolidation
with their analytical solutions. Good agreement among all of those results was obtained by including interior
points. It has been demonstrated that 2D coupled poroelastic problems can be solved using the present simple
particular integral formulation. These analyses and earlier ones of Park and Banerjee (2002a,b) prove once
again that the choice of complimentary and particular solutions are somewhat arbitrary because it is the total
solution which provides the uniqueness of the solution by satisfying the boundary conditions. This well-known
fact is of course one of the reasons why authors have always restricted themselves with only simpler global
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shape functions of (A � r) or (A � r)2 type. More elaborate functions may have better modeling capabilities on
their own but used in the context of particular integrals may not show any better performance.
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